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Extended Navier-Stokes equations

Navier-Stokes equations (P is the Leray projector):
∂tu + P(u · ∇u − f ) = νP∆u in Ω,

div u = 0 in Ω,
u = 0 on Γ,

u(0) = u0 in Ω.

In the extended, or unconstrained, Navier-Stokes equations, we drop
the divergence-free condition on u, but add a term that controls the
divergence:

∂tu + P(u · ∇u − f ) = ν(P∆u +∇div u) in Ω,
u = 0 on Γ,

u(0) = u0 in Ω.
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Control of divergence
Taking the divergence of

∂tu + P(u · ∇u − f ) = ν(P∆u +∇div u)

gives 
∂tg = ν∆g in Ω,
∇g · n = 0 on Γ,

g(0) = div u0 in Ω,

where

g = div u.

So g satisfies the heat equation with Neumann boundary conditions.

If div u0 = 0 then div u = 0 for all time, and extended Navier-Stokes
reduces to Navier-Stokes.
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Where do these equations come from?
In an equivalent form, the extended Navier-Stokes equations go back
to Grubb and Solonnikov [1989, 1991].

Liu, Liu, and Pego [2005, 2007] studied these equations, motivated by
the analysis of the stability of the following numeric scheme of
Johnston and Liu [2004]:

〈∇pn,∇φ〉 = 〈f n − un · ∇un + ν∆un − ν∇div un, φ〉 ∀φ ∈ H1(Ω)

then

un+1 − un

∆t
− ν∆un+1 = f n − un · ∇un −∇pn,

u|∂Ω = 0.

This is a weak-form pressure-Poisson equation for pn whose solution
is then used in the elliptic boundary value problem for un+1, and the
process is iterated.
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Stokes and Euler pressures

Liu, Liu, Pego [2005, 2007] analyze the extended Navier-Stokes
equations in an equivalent form:

∂tu + u · ∇u +∇pE + ν∇pS = ν∆u + f in Ω,
u = 0 on Γ,

u(0) = u0 in Ω,

where

∇pE = P(u · ∇u − f )− u · ∇u + f ,
∇pS = ∆u − P∆u −∇ div u = [∆,P]u,

are the Stokes and Euler pressures, respectively.
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Strong versus weak solutions

For a weak solution (details later) equality holds with respect to
duality pairing with appropriate test functions and

u ∈ L∞(0,T ; L2) ∩ L2(0,T ; H1).

Regularity of the pressure, if any, comes from recovering it from u.

Equality will also hold as distributions.

By a strong solution we mean that

u ∈ L2(0,T ; H2) ∩ H1(0,T ; L2), ∇p ∈ L2(0,T ; L2)

so that the equations make sense as classical derivatives.
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Well-posedness of strong solutions
The emphasis in Liu, Liu, Pego [2005, 2007] is on the stability of their
numeric scheme and related schemes. They prove local
well-posedness of strong solutions, however. Key to everything is a
commutator estimate on [∆,P]u:

Theorem (Liu, Liu, Pego 2005, 2007)

Let Ω be a connected, bounded domain with C3 boundary. For any
δ > 0 there exists Cδ ≥ 0 such that for all u in H2 ∩ H1

0 ,

‖[∆,P]u‖2 = ‖∇pS‖2 ≤
(

1
2

+ δ

)
‖∆u‖2 + Cδ‖∇u‖2.

‖·‖ := ‖·‖L2(Ω) here and throughout.

It is important that the constant in front of ‖∆u‖2 is < 1.
The boundary must be fairly smooth.
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Lack of coercivity
Iyer, Pego, and Zarnescu [2012] continue to focus on strong solutions.
They obtain small data global existence results in 3D and in 2D. For u0
in H1

0 , in 3D the smallness condition is on the the H1-norm of u0 and in
2D it is on the divergence of u0.

Defining the extended Stokes operator,

Au := −ν(P∆u +∇div u),

so that
∂tu + P(u · ∇u − f ) = −Au,

they show that A is neither positive on H2 ∩ H1
0 nor is it coercive in the

sense that an inequality of the form,

〈u,Au〉 ≥ ε‖∇u‖2 − C‖div u‖2,

fails to hold for any ε > 0.
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Coercivity in another space
Define Qu to be the unique H1-function with mean zero for which

∇Q(u) = (I − P)u.

Iyer, Pego, and Zarnescu show that for all sufficiently small ε there
exists a C = C(ε) such that A is positive and coercive in the
H1-equivalent inner product,

(u, v)ε = (u, v) + ε(∇u,∇v) + C(Q(u),Q(v)).

The coercivity relies upon the commutator estimate on [∆,P]u
from Liu, Liu, and Pego.
The coercivity is the basis of their small data global existence
result.
They also show that for some initial data, the L2-norm of the
velocity initially increases without forcing, before eventually
decreasing.
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Global-in-time solutions
To obtain global-in-time solutions, we need to go beyond the
commutator estimate and coercivity approach, and look for weak
solutions. These will ultimately lead to strong solutions and to higher
regularity solutions, global-in-time for 2D.

The key new idea is very simple: decompose the velocity field, u, as

u = v + z,

where v and z lie in H1
0 with

v ∈ V :=
{

w ∈ (H1
0 (Ω))2 : div w = 0

}
.

To do this, we need an orthogonal decomposition,

(H1
0 (Ω))d = V ⊕ V⊥.
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Orthogonal decomposition of H1
0

Let g = div u for a given u ∈ H1
0 (Ω), and let z be the solution to the

stationary Stokes problem,
−∆z +∇q = 0 in Ω,

div z = g in Ω,
z = 0 on ∂Ω

so that v = u − z satsifies
−∆v −∇q = −∆u in Ω,

div v = 0 in Ω,
v = 0 on ∂Ω.

Then z ∈ H1
0 (even if ∂Ω is only Lipschitz) and so v lies in V . And,

(∇v ,∇z) = −(v ,∆z) = −(v ,∇q) = 0,

showing orthogonality in H1
0 .
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Divergence lifting
Since g = div u solves the heat equation with Neumann boundary
conditions, g is determined solely by the divergence at time zero. Then
z is determined uniquely from the stationary Stokes problem.

We view this as a lifting from the divergence to a vector field in (H1
0 )d

having that divergence.

The vector field, z, being known for all time, we rewrite the extended
Navier-Stokes equations with v being the vector field to solve for:

∂tv − νP∆v + P(v · ∇v)

= f̃ − P(v · ∇z)− P(z · ∇v) + ν∇div u,

where f̃ = Pf − P(z · ∇z)− ∂tz.

Now, classical approaches to existence and uniqueness of the usual
Navier-Stokes equations can be applied.
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Weak solutions

Definition
We define a weak solution of the extended Navier-Stokes equations to
be a function u such that

u ∈ L∞(0,T ; L2) ∩ L2(0,T ; H1
0 ), div u ∈ C(0,T ; L2) ∩ L2(0,T ; H1),

and

∂t (u, ϕ) + ((u · ∇)u, ϕ) = −ν(∇u,∇ϕ) + 〈f , ϕ〉, (1)
∂t (div u,h) = −ν(∇div u,∇h) (2)

for almost all t ∈ (0,T ), and all test functions ϕ ∈ V , h ∈ H1.

It follows from (2) that (1) also holds when ϕ = ∇q for any q in H1.
This is the key to showing that ∂tu + P(u · ∇u − f ) = ν(P∆u +∇div u)
holds as distributions (and almost everywhere for strong solutions).
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Existence and uniqueness of weak solutions

Theorem (Ignatova, Iyer, K,Pego, Zarnescu)
Let d = 2 or 3, T > 0 be arbitrary, and assume that

u0 ∈ L2(Ω) and f ∈ L2(0,T ; V ′).

If either
div u0 ∈ L2(Ω) and ∂Ω is C2

or
div u0 ∈ H2(Ω) and ∂Ω is Lipschitz

then there exists a weak solution, u, with initial data u0 such that

u ∈ L∞(0,T ; L2) ∩ L2(0,T ; H1
0 ) and div u ∈ C∞(Ω× (0,T )).

If ∂Ω ⊆ R2 is Lipschitz then weak solutions are unique.
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Galerkin approximation

With the decomposition, u = v + z, the weak formulation gives

∂t (v , ϕ) + ν(∇v ,∇ϕ) + (v · ∇v , ϕ) = 〈̃f , ϕ〉 − (v · ∇z, ϕ)− (z · ∇v , ϕ)

with, as before,

f̃ = Pf − P(z · ∇z)− ∂tz.

This is the Navier-Stokes equations with different forcing and with two
additional terms, both linear in v .

The existence of solutions—and higher regularity—are established
using a Galerkin approximation of v .

The main new technical issue is obtaining sufficient regularity of z as it
is lifted from div u.
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Regularity of divergence lifting
The lowest regularity term is ∂tz, which comes from lifting
∂tg = ∂t div u.

div u0 ∈ H2 and ∂Ω is Lipschitz:

∂tg satisfies the heat equation with an initial value of
ν∆ div u0, which lies in L2(Ω). Hence ∂tg ∈ C0(0,T ; L2) and
classical “lifting” via solving the Stokes problem gives

∂tz ∈ L∞(0,T ; H1).

div u0 ∈ L2(Ω) and ∂Ω is C2:

A duality argument gives

‖∂tz‖ ≤ C‖∂tg‖H̃−1 ,

where H̃−1(Ω) is the dual of H1(Ω). Just enough regularity.
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Strong solutions

Theorem

Let Ω ⊂ R2 be a bounded C2 domain and suppose

u0 ∈ H1
0 ∩ H2, div u0 ∈ H2, ∇div u0 · n = 0

and

f ∈ L2(0,T ; H−1), ∂t f ∈ L2(0,T ; H−1), f (0) ∈ L2.

If u is the (unique) weak solution with initial data u0, then

∂tu ∈ L∞(0,T ; L2) ∩ L2(0,T ; H1
0 ).

If, further, f ∈ L∞(0,T ; L2), then u ∈ L∞(0,T ; H2).
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The Shirokoff-Rosales system

Shirokoff and Rosales [2011] introduced a pressure-Poisson system to
provide a high-order, efficient time discrete scheme for the
incompressible Navier-Stokes equations in irregular domains. The
continuous time version of their scheme is

∂tu + (u · ∇)u − ν∆u +∇p = f in Ω,
u × n = 0 on ∂Ω,
div u = 0 on ∂Ω,

and {
∆p = −div ((u · ∇)u) + div f in Ω,

∇p · n = (ν∆u − (u · ∇)u + λu + f ) · n− C on ∂Ω,
(3)

where λ > 0 and C = C(t) is chosen to satisfy the compatibility
condition necessary for solving for the pressure.

Jim Kelliher (UCR) Extended Navier-Stokes equations 27 Oct 2012 18 / 26



The heat equation appears again

Taking the divergence of the first equation, we see that{
∂t div u − ν∆ div u = 0 in Ω,

div u = 0 on ∂Ω.

Thus if div u0 = 0, then for all t ≥ 0, we must have div u = 0 identically
in Ω, and not just on ∂Ω.
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Damping of u · n

Explicitly,

C =
1
|∂Ω|

∫
∂Ω

(ν∆u + λu) · n =
1
|∂Ω|

∫
Ω

(
ν∆ div u + λdiv u

)
.

Using the boundary condition for p and the equation for u gives

∂t (u · n) + λu · n = C on ∂Ω.

If div u0 = 0 then div u = C = 0 for all time. If also u0 · n = 0 then
u · n = 0 for all time, and these equations reduce to the Navier-Stokes
equations.
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Well-posedness

Given u ∈ H1 satisfying u × n = 0 on ∂Ω, we define v , z1, and z2 as
solutions of the Stokes problems,

−∆z1 +∇q1 = 0 in Ω −∆z2 +∇q2 = 0 in Ω,
div z1 = 0 in Ω div z2 = div u in Ω,

z1 = Projn u on ∂Ω z2 = 0 on ∂Ω,

and 
−∆v +∇q = −∆u in Ω,

div v = 0 in Ω,
v = 0 on ∂Ω.

Thus, z1 carries the boundary condition, z2 carries the divergence, and
v lies in V .
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Bounding z1 and z2

Letting z = z1 + z2, we treat z and v much as for the extended
Navier-Stokes systems.

Estimates on z2 are like those on z for the extended Navier-Stokes
equations, the estimates coming from lifting the divergence, which
satiisfies the heat equation with Dirichlet boundary conditions:

‖z2(t)‖H1 ≤ C‖div u‖L2 ≤ C‖div u0‖L2 .

For z1, estimates on the stationary Stokes problem gives

‖z1(t)‖H1(Ω) ≤ C‖u · n(t)‖H1/2(∂Ω).
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Bounding u · n and so z1

From
∂t (u · n) + λu · n = C on ∂Ω,

applying Duhamel’s principle gives

u · n(t , x) = e−λtu0 · n(x) +

∫ t

0
e−λ(t−s)C(s) ds.

Using the expression for C and that div u satisfies the heat equation,∫ t

0
e−λ(t−s)C(s) ds =

1
|∂Ω|

∫ t

0
e−λ(t−s)

∫
Ω

(
ν∆ div u + λdiv u

)
(s, x) dx ds

=
1
|∂Ω|

∫ t

0
e−λ(t−s)

∫
Ω

(
∂s div u + λdiv u

)
(s, x) dx ds.

Jim Kelliher (UCR) Extended Navier-Stokes equations 27 Oct 2012 23 / 26



Bounding u · n and so z1

But, eλs(∂s div u + λdiv u)(s, x) = ∂s(eλs div u(s, x)), so integrating in
time yields,∫ t

0
e−λ(t−s)C(s) ds =

1
|∂Ω|

[
div u(t)− e−λt div u0

]
.

Thus, bottom line,

‖z1(t)‖H1 ≤ C‖u · n‖H1/2(∂Ω) ≤ C
(

e−λt‖u0‖H1/2(∂Ω) + ‖div u0‖
)
,

since

‖div u(s)‖ ≤ C‖div u(s)‖ ≤ C‖div u0‖

by the regularity of solutions to the heat equations with Dirichlet
boundary conditions.
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Well-posedness
The bounds on z1 and z2 allow us to treat z = z1 + z2 essentially the
same as for the extended Navier-Stokes equations, and we get a
similar well-posedness result.

Theorem (Us)

Let d = 2,3, and Ω ⊂ Rd be a C2 domain. Let

u0 ∈ L2(Ω), div u0 ∈ L2(Ω), u0 · n ∈ H1/2(∂Ω), f ∈ L2(0,T ; V ′).

There exists a weak solution, u, with initial data u0 such that

u ∈ L∞(0,T ; L2) ∩ L2(0,T ; H1) and div u ∈ C∞(Ω× (0,T )),

and this solution is unique if d = 2. Moreover, if u0 lies in H1
0 (Ω) with

div u0 ∈ H1(Ω) and f ∈ L2((0,T )× Ω) then

u ∈ L∞(0,T ; H1
0 ) ∩ L2(0,T ; H2).

Jim Kelliher (UCR) Extended Navier-Stokes equations 27 Oct 2012 25 / 26



Concluding remarks

Using “divergence lifting” rather than the commutator estimate
allowed us to easily obtain existence and uniqueness results
closely paralleling those of the classical Navier-Stokes equations.

Divergence lifting also allowed us to say something about
Lipschitz domains.

So far, our efforts to use divergence lifting to reproduce the
stability results of Liu, Liu, and Pego more simply, or to extend
them to Lipschitz domains have not been successful.

Stability for the Shirokoff-Rosales system also poses difficulties
using either method.
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